Senior ML Platform Engineer
2 weeks ago
Mistplay est l'application de fidélité n°1 pour les joueurs mobiles. Notre communauté de millions de joueurs mobiles engagés utilise Mistplay pour découvrir de nouveaux jeux et gagner des récompenses. Les joueurs sont récompensés pour le temps et l'argent qu'ils consacrent aux jeux et peuvent échanger ces récompenses contre des cartes cadeaux. Mistplay a pour mission d'être le meilleur moyen de jouer à des jeux mobiles pour tous, partout dans le monde Téléchargez Mistplay sur le Google Play Store ici et suivez nous sur Instagram , Twitter et Facebook .Veuillez noter : Au Canada , Mistplay suit un modèle hybride de 3 jours/semaine en bureau à Toronto (400 University Ave) & Montréal (1001 Blvd. Robert-Bourassa)Mistplay is the #1 loyalty app for mobile gamers. Our community of millions of engaged mobile gamers come to Mistplay to discover new games to play and earn rewards. Gamers are rewarded for their time and money spent within the games and can redeem those rewards for gift cards. Mistplay is on a mission to be the best way to play mobile games for everyone everywhere Download Mistplay on the Google Play Store here and follow us on Instagram , Twitter and Facebook .Please Note: In Canada , Mistplay follows a 3 days/week in-office hybrid model in Toronto (400 University Ave) & Montreal (1001 Blvd. Robert-Bourassa)English Description is Below ⬇️Under the leadership of the Director of Data and Machine Learning Platform, the Senior ML Platform Engineer within Mistplay’s Data Team will play a key role in researching and developing machine learning solutions to solve complex business problems. The Senior ML Platform Engineer will work closely with a cross-functional team to identify areas for improvement and design and implement scalable solutions. Relevant experience can range from working on a wide variety of optimization and classification problems, e.g. collaborative filtering/recommendation, fraud detection, segmentation, propensity modeling, text/sentiment classification, etc.What you’ll doDesign, build, and operate standardized training-to-serving pipelines with Airflow, covering artifact management, environment provisioning, packaging, deployment, and rollback for SageMaker endpoints.Own real-time and batch inference on SageMaker: multi-model endpoints, serverless inference where appropriate, blue/green and canary strategies, autoscaling policies, and cost controls (spot strategies, instance right-sizing).Implement ultra-low-latency serving patterns with Redis/Valkey: feature caching, online feature retrieval, request-scoped state, model response caching, and rate limiting/backpressure for bursty traffic.Provision and manage ML/data infrastructure with Terraform: SageMaker endpoints/configs, ECR/ECS/EKS resources, networking/VPC endpoints, ElastiCache/Valkey clusters, observability stacks, secrets, and IAM.Build platform abstractions and golden paths: Airflow DAG templates, CLI/SDKs, cookie-cutter repos, and CI/CD pipelines that take models from notebooks to production predictably.Establish and run model lifecycle governance: model/feature registries, approval workflows, promotion policies, lineage, and audit trails integrated with Airflow runs and Terraform state.Implement end-to-end observability: data/feature freshness checks, drift/quality gates, model performance/latency SLOs, infra health dashboards, tracing, and alerting—plus incident response and postmortems.Partner with Security, SRE, and Data Engineering on private networking, policy-as-code, PII handling, least-privilege IAM, and cost-efficient architectures across environments.Evaluate, integrate, and rationalize platform tooling (e.g., MLflow registry, feature stores, serving gateways); lead migrations with clear change management and minimal downtime.What you’ll bring5+ years building and operating production-grade ML/data platforms with a focus on serving, reliability, and developer experience.Strong software engineering in Python, Go, or Java; experience building resilient services, APIs, and automation tooling with high test coverage.Deep experience with AWS SageMaker inference: endpoint configuration, containerization, model packaging, autoscaling, serverless vs. real-time trade-offs, MME, A/B and canary releases.Expertise with online feature stores like Redis/Valkey in ML serving contexts.Proven Terraform experience managing ML and data infra end-to-end: modules, workspaces, drift detection, change reviews, and safe rollbacks; familiarity with GitOps patterns.Airflow orchestration at scale: dependency modeling, sensors, retries, SLAs, backfills, DAG factories, and integrations with registries, artifact stores, and Terraform pipelines.Familiarity with ML frameworks (scikit-learn, XGBoost, PyTorch, TensorFlow) from a platform-integration perspective to support diverse runtimes and containers.Observability for ML Workflows: metrics/logs/traces, performance profiling, capacity planning, cost monitoring, and runbooks.Excellent communication and cross-functional collaboration with Data Science, Data Engineering, DevOps and Backend.Ce que tu apporteras à Mistplay :Plus de 5 ans d'expérience dans la création et l'exploitation de plateformes ML/de données de niveau production, axées sur le service, la fiabilité et l'expérience développeur.Solides compétences en génie logiciel avec Python, Go ou Java ; expérience dans la création de services résilients, d'API et d'outils d'automatisation avec une couverture de test élevée.Expérience approfondie de l'inférence AWS SageMaker : configuration des points de terminaison, conteneurisation, empaquetage de modèles, autoscaling, compromis entre serverless et temps réel, MME, A/B et canary releases.Expertise des magasins de fonctionnalités en ligne tels que Redis/Valkey dans des contextes de service ML.Expérience avérée de Terraform dans la gestion de bout en bout de l'infrastructure ML et des données : modules, espaces de travail, détection des dérives, révision des modifications et restaurations sécurisées ; connaissance des modèles GitOps.Orchestration Airflow à grande échelle : modélisation des dépendances, capteurs, réessais, SLA, backfills, usines DAG et intégrations avec les registres, les magasins d'artefacts et les pipelines Terraform.Connaissance des cadres ML (scikit-learn, XGBoost, PyTorch, TensorFlow) du point de vue de l'intégration des plateformes afin de prendre en charge divers environnements d'exécution et conteneurs.Observabilité des flux de travail ML : métriques/journaux/traces, profilage des performances, planification des capacités, surveillance des coûts et runbooks.Excellente communication et collaboration interfonctionnelle avec les équipes de science des données, d'ingénierie des données, de DevOps et de backend.Pourquoi choisir Mistplay ?Nous faisons tout pour rendre notre environnement de travail aussi accueillant et plaisant que possible Un poste chez Mistplay s’accompagne de toute une série d'avantages que nous proposons en mode virtuel ou présentiel : déjeuners d'équipe, soirées jeux, événements à l'échelle de l'entreprise, et bien plus encore.Notre culture est profondément ancrée dans la croissance et soutenue par une équipe de personnes intelligentes, dynamiques et enthousiastes. Nous utilisons les données pour apprendre, améliorer et adapter en permanence. Nous favorisons un environnement où chacun est encouragé à partager ses idées, à repousser les limites, à prendre des risques calculés et à voir ses visions se concrétiser.Why Mistplay?We strive to make our work environment as inviting and fun as possible Working at Mistplay is coupled with a whole array of perks that we've adopted virtually and in-person: Team Lunches, game nights, company-wide events, and so much more. Our culture is deeply rooted in growth and upheld by a team of smart, dynamic, and enthusiastic people. We utilize data to constantly learn, improve, and adapt. We foster an environment where everyone is encouraged to share their ideas, push boundaries, take calculated risks, and witness their visions come to life.*Nous remercions tous(tes) les candidat(e)s. Le genre masculin a été utilisé dans le but d'alléger le texte. Nous souscrivons au principe de l’équité en matière d’emploi. #J-18808-Ljbffr
-
Senior ML Engineer
4 weeks ago
Mississauga, Toronto, Montreal, Calgary, Vancouver, Edmonton, Old Toronto, Ottawa, Quebec, Winnipeg, Halifax, Saskatoon, Burnaby, Hamilton, Victoria, Surrey, Halton Hills, London, Regina, Markham, Brampton, Vaughan, Kelowna, Laval, Southwestern Ontario, R, Canada vaga para Senior ML Engineer, Recommendation Systems na Launch Potato Full timeA profitable digital media company is looking for a Senior Machine Learning Engineer specializing in Recommendation Systems. In this role, you will design and optimize ML systems that deliver real-time recommendations across millions of users. Candidates should have a strong background in ranking algorithms, experience with large-scale ML deployments, and...
-
Senior ML Platform Engineer
4 weeks ago
Montreal, Canada ODAIA Full time## Senior ML Platform EngineerMistplayMistplay is the #1 loyalty app for mobile gamers. Our community of millions of engaged mobile gamers come to Mistplay to discover new games to play and earn rewards. Gamers are rewarded for their time and money spent within the games and can redeem those rewards for gift cards. Mistplay is on a mission to be the best way...
-
Senior ML Platform Engineer
4 weeks ago
Montreal, Canada ODAIA Full time## Senior ML Platform EngineerMistplayMistplay is the #1 loyalty app for mobile gamers. Our community of millions of engaged mobile gamers come to Mistplay to discover new games to play and earn rewards. Gamers are rewarded for their time and money spent within the games and can redeem those rewards for gift cards. Mistplay is on a mission to be the best way...
-
Senior ML Platform Engineer
4 weeks ago
Montreal, Canada ODAIA Full time## Senior ML Platform EngineerMistplayMistplay is the #1 loyalty app for mobile gamers. Our community of millions of engaged mobile gamers come to Mistplay to discover new games to play and earn rewards. Gamers are rewarded for their time and money spent within the games and can redeem those rewards for gift cards. Mistplay is on a mission to be the best way...
-
Montreal, Canada Lightspeed Full timeA global technology firm in Montreal is seeking a Senior Machine Learning Engineer to join their Data Science Enablement team. This role focuses on building scalable ML infrastructure and MLOps platforms. The ideal candidate has over 5 years of experience with ML frameworks and a strong proficiency in Python. The company offers competitive benefits, high...
-
Montreal, Canada Lightspeed Full timeA global technology firm in Montreal is seeking a Senior Machine Learning Engineer to join their Data Science Enablement team. This role focuses on building scalable ML infrastructure and MLOps platforms. The ideal candidate has over 5 years of experience with ML frameworks and a strong proficiency in Python. The company offers competitive benefits, high...
-
Montreal, Canada Lightspeed Full timeA global technology firm in Montreal is seeking a Senior Machine Learning Engineer to join their Data Science Enablement team. This role focuses on building scalable ML infrastructure and MLOps platforms. The ideal candidate has over 5 years of experience with ML frameworks and a strong proficiency in Python. The company offers competitive benefits, high...
-
Senior ML Engineer — Scalable MLOps Platform
2 weeks ago
Montreal, Canada Lightspeed Commerce Full timeA leading tech company in Montreal is seeking a Senior Machine Learning Engineer to join their Data Science Enablement team. This role involves designing scalable ML infrastructure and managing the MLOps platform. Candidates should have 5+ years of relevant experience, proficiency in Python, and strong knowledge of ML frameworks like TensorFlow and PyTorch....
-
Senior ML Engineer — Scalable MLOps Platform
2 weeks ago
Montreal, Canada Lightspeed Commerce Full timeA leading tech company in Montreal is seeking a Senior Machine Learning Engineer to join their Data Science Enablement team. This role involves designing scalable ML infrastructure and managing the MLOps platform. Candidates should have 5+ years of relevant experience, proficiency in Python, and strong knowledge of ML frameworks like TensorFlow and PyTorch....
-
Montreal, Canada Lightspeed Full timeA global technology firm in Montreal is seeking a Senior Machine Learning Engineer to join their Data Science Enablement team. This role focuses on building scalable ML infrastructure and MLOps platforms. The ideal candidate has over 5 years of experience with ML frameworks and a strong proficiency in Python. The company offers competitive benefits, high...